Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chem Biodivers ; 21(4): e202301736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451006

ABSTRACT

In recent years, the research of mitochondrial dysfunction in depression has drawn the focus of researchers. Our research group previously found that Xiaoyao San (XYS) has improved the mitochondrial structure and the blocked tricarboxylic acid cycle (TCA cycle) in the hippocampal tissue of chronic unpredictable mild stress (CUMS) rats. However, the specific targets and active components of XYS remain unclear, and the potential to improve hippocampal mitochondrial TCA cycle disorder was also unexplored. In this research, a strategy to combine stable isotope-resolved metabolomics (SIRM), network pharmacology and transmission electron microscopy (TEM) was used to explore the potential, targets of action, and active components of XYS to improve hippocampal mitochondrial TCA cycle disorder of CUMS rats. The results of TEM showed that the ultrastructure of hippocampal mitochondria could be improved by XYS. A combination of SIRM and molecular docking showed that pyruvate carboxylase (PC), ATP citrate lyase (ACLK), glutamate dehydrogenase (GLDH), glutamate oxaloacetate transaminase (GOT) and pyruvate dehydrogenase (PDH) were targets of XYS to improve TCA cycle disorder. In addition, troxerutin was found to be the most potential active component of XYS to improve TCA cycle disorder. The above research results can provide new insights for the development of antidepressant drugs.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Rats , Animals , Molecular Docking Simulation , Antidepressive Agents/pharmacology , Drugs, Chinese Herbal/pharmacology
2.
J Ethnopharmacol ; 300: 115702, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36099982

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine (TCM) theory, depression is an emotional disease, which is thought to be related to stagnation of liver qi and dysfunction of the spleen in transport. Xiaoyao San (XYS) is considered to have the effects of soothing liver-qi stagnation and invigorating the spleen. The spleen has the function to transport and transform nutrients. The liver has also termed the center of energy metabolism in the body. Therefore, exploring the antidepressant effects of XYS from the perspective of energy metabolism may reveal new findings. AIM OF THE STUDY: Glucose catabolism is an important part of energy metabolism. In recent years, several researchers have found that XYS can exert antidepressant effects by modulating abnormalities in glucose catabolism-related metabolites. The previous research of our research group found that the hippocampus glucose catabolism was disordered in depression. However, the antidepressant potential of XYS through modulating the disorders of hippocampal glucose catabolism and the specific metabolic pathways and targets of XYS action were still unknown. The aim of this study was to address the above scientific questions. MATERIALS AND METHODS: In this research, the CUMS (chronic unpredictable mild stress) model was used as the animal model of depression. The antidepressant effect of XYS was evaluated by behavioral indicators. The specific pathways and targets of XYS modulating the disorders of glucose catabolism in the hippocampus of CUMS rats were obtained by stable isotope-resolved metabolomics. Further, the isotope tracing results were also verified by molecular biology and electron transmission electron microscopy. RESULTS: The results demonstrated that XYS pretreatment could significantly improve the depressive symptoms induced by CUMS. More importantly, it was found that XYS could modulate the disorders of glucose catabolism in the hippocampus of CUMS rats. Stable isotope-resolved metabolomics and enzyme activity tests showed that Lactate dehydrogenase (LDH), Pyruvate carboxylase (PC), and Pyruvate dehydrogenase (PDH) were targets of XYS for modulating the disorders of glucose catabolism in the hippocampus of CUMS rats. The Succinate dehydrogenase (SDH) and mitochondrial respiratory chain complex V (MRCC-Ⅴ) were targets of XYS to improve abnormal mitochondrial oxidative phosphorylation in the hippocampus of CUMS rats. XYS was also found to have the ability to improve the structural damage of mitochondria and nuclei in the hippocampal caused by CUMS. CONCLUSIONS: This study was to explore the antidepressant effect of XYS from the perspective of glucose catabolism based on a strategy combining stable isotope tracing, molecular biology techniques, and transmission electron microscopy. We not only obtained the specific pathways and targets of XYS to improve the disorders of glucose catabolism in the hippocampus of CUMS rats, but also revealed the specific targets of the pathways of XYS compared with VLF.


Subject(s)
Drugs, Chinese Herbal , Succinate Dehydrogenase , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Behavior, Animal , Depression/psychology , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Glucose/pharmacology , Hippocampus/metabolism , Isotopes/metabolism , Isotopes/pharmacology , Lactate Dehydrogenases/metabolism , Metabolomics/methods , Pyruvate Carboxylase , Pyruvates/pharmacology , Rats , Stress, Psychological/drug therapy , Succinate Dehydrogenase/metabolism
3.
J Proteome Res ; 20(5): 2477-2486, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33797260

ABSTRACT

Depression is one of the most complex multifactorial diseases affected by genetic and environmental factors. The molecular mechanism underlying depression remains largely unclear. To address this issue, a novel nervous-endocrine-immune (NEI) network module was used to find the metabolites and evaluate the diagnostic ability of patients with depression. During this process, metabolites were acquired from a professional depression metabolism database. Over-representation analysis was performed using IMPaLA. Then, the metabolite-metabolite interaction (MMI) network of the NEI system was used to select key metabolites. Finally, the receiver operating characteristic curve analysis was evaluated for the diagnostic ability of arachidonic acid. The results show that the numbers of the nervous system, endocrine system, and immune system pathways are 10, 19, and 12 and the numbers of metabolites are 38, 52, and 13, respectively. The selected shared metabolite-enriched pathways can be 97.56% of the NEI-related pathways. Arachidonic acid was extracted from the NEI system network by using an optimization formula and validated by in vivo experiments. It was indicated that the proposed model was good at screening arachidonic acid for the diagnosis of depression. This method provides reliable evidences and references for the diagnosis and mechanism research of other related diseases.


Subject(s)
Depression , Drugs, Chinese Herbal , Arachidonic Acid , Biomarkers , Depression/diagnosis , Endocrine System , Humans
SELECTION OF CITATIONS
SEARCH DETAIL